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Transport by Vector Fields with Kolmogorov Spectrum

Leonid Koralov1
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We study a model of turbulent transport described by the motion in a Gaussian
random velocity field with Kolmogorov spectrum. The field is assumed to be
divergence-free, homogeneous in time and space, and Markovian in time. The
molecular viscosity defines the cutoff in the Fourier space, thus regularizing the
vector field of the pure infinite-Reynolds-number Kolmogorov spectrum by
vector fields with smooth realizations. We provide an asymptotic bound on the
effective diffusivity of the finite-Reynolds number fields as R � �. Namely, with
macroscopic parameters of the system fixed and the viscosity tending to zero,
the effective diffusivity is bounded above by a constant which does not depend
on the Reynolds number.

KEY WORDS: Turbulence; random fields; Kolmogorov spectrum; effective
diffusivity.

1. INTRODUCTION

Consider the motion of a particle in the random velocity field V(x, t),
x # R3, which is described by the system of random ordinary differential
equations

X4 t=V(Xt , t), X0=x0 (1)

The initial data x0 is assumed to be independent of the velocity field
V(x, t). The matrix of effective diffusivity is defined as

Dab=
1
2

lim
t � �

E((X a
t &X a

0)(X b
t &X b

0))
t

, a, b=1,..., 3 (2)
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where a and b are coordinate directions. It needs to be stressed that we are
considering the long-time limit, when fluid particle displacements obey
|Xt&X0 |>>L, where L is the characteristic length scale of the flow.

In a series of papers(8, 9) we have proved the existence of effective dif-
fusivity for Markovian in time Gaussian flows with smooth realizations.
See also related work of Fannjiang, Komorowski, and Papanicolaou.(2, 7)

Here we relate our results to the Kolmogorov theory. Our main result is
a rigorous proof of the upper bound for the effective diffusivity on the basis
of Kolmogorov structure assumed for V.

We start with a vector field whose spectral measure is of order |k|: at
infinity. The case of pure Kolmogorov spectrum corresponds to :=&11

3 .
In this case a typical realization of the field V is not Lipschitz continuous.

In order to make sense of the equation of motion (1) we introduce
cutoffs at infinity for the spectral measure, thus approximating V by
smooth random fields V m. The spectral measure of V m is defined to be
equal to the spectral measure of V on the cube of size m centered at the
origin in wave number space, and equal to zero elsewhere. As follows from
ref. 10 the size of the cutoff m scales as R3�4�L, where R is the Reynolds
number and L is the macroscopic length scale of the flow.

In Section 2, following ref. 11, and also using ideas which succeeded in
constructive quantum field theory, (5) we use a discretization of the spec-
trum of the random field V m(x, t) in order to approximate the system of
random ordinary differential equations X4 t=V m(Xt , t) by a finite dimen-
sional system of stochastic differential equations. The resulting vector field,
whose spectrum is supported on a finite number of points, will be denoted
by V mn. Thus, together with (1) we consider an auxiliary system

X4 t=V mn(Xt , t) (3)

Here m is the size of the cutoff and n is the number of points in the support
of the spectrum of V mn. The same discretization procedure was used
relative to the cutoff n in ref. 9. Now we additionally need to keep track of
the dependence of V mn on the large wavenumber cutoff m.

From the Markov assumption governing the time correlations of the
random velocity statistics, each Fourier mode in the random velocity field
V mn(x, t) is represented by a multidimensional Ornstein�Uhlenbeck process.
Thus (3) can be also viewed as a system of stochastic differential equations

dX a
t = :

2n

i=1

Y i
tv

a
i (Xt) dt, a=1,..., 3 (4)

dY i
t=- 20i dW i

t&0i Y i
t dt, i=1,..., 2n (5)
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where vi are periodic with common period p, and Y i
t are independent

Ornstein�Uhlenbeck processes. The process Y i corresponds to the Fourier
mode with wavenumber ki of the field V mn. The speed of the process, 0i ,
is equal to the decay rate of the time correlation of the mode with fre-
quency ki . The Kolmogorov assumption implies that the dependence of 0
on k is

0(k)t |k|2�3 (6)

for large |k|.(10)

In Section 3 we use the harmonic coordinates method(12, 4) to express
the effective diffusivity of the field V mn in terms of the solutions ua of the
hypoelliptic equations

M \ua

'
+xa+=0

on T3
p_R2n, where M is the infinitesimal generator of the system (4), (5),

and '2 is its invariant measure. The existence and uniqueness of solutions
to this PDE is one of the main technical results of ref. 8. Hormander's
hypoellipticity principle(6) applied to the differential operator and its
adjoint is a key element in the proof of existence and regularity. We state
the existence and uniqueness theorem in Section 3, referring the reader to
ref. 8 for the proof.

In Section 4 we obtain an a priori estimate for the operator M which
is uniform in the size of the cutoff m and in the number of modes n in the
spectrum of the velocity field. The power-law growth (6) for the decay rates
of the velocity modes is crucial for the proof of the a priori estimate. The
estimate allows us to bound the effective diffusivity Dm, ab of the fields V m.
We obtain

Dm, ab�c (7)

for the vector fields with Kolmogorov spectrum, as a rigorous bound in
agreement with formal perturbation theory.

2. DEFINITIONS, ASSUMPTIONS, AND RESULTS

Let V(x, t), x # Rd be a divergence free, zero mean Gaussian vector
field, which is stationary in x and t and Markov in time. Let Gab=
E(V a(x, t) V b(0, 0)) be the correlation matrix of the field V(x, t).

The properties of V(x, t) listed above imply the exponential in time

behavior for the spectral matrix Gab@ (k, t)=(2?)&3 � e&ikxGab(x, t) dx of V.(11)
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Namely,

G� (k, t)=exp(&|t| 0(k)) M(k) (8)

for some matrices 0 and M. We shall use (8) to define a class of vector
fields, which will include the fields whose finite dimensional distributions
are invariant with respect to orthogonal transformations of space variables
(isotropy), and time reversal. Namely, we shall assume that 0(k) is a
scalar, and the matrix M(k) is symmetric. In the isotropic case M(k)=
,( |k| )($ab&(kakb�|k|2)). (1)

The condition (M(k) k, k)=0 for all k is equivalent to the divergence
free property of the field. Recall, that since M is a Fourier transform of a
positive definite matrix valued function, it follows that for each a, b fixed,
Mab(dk) is a real valued signed measure on R3, and that M(k) is a positive
matrix. The positivity means that for each vector v # R3, and each
measurable set A/R3

:
3

a, b=1

vavb |
A

Mab(dk)�0

We shall denote the variation of Mab(dk) by |Mab| (dk).
Let us discuss the physical interpretation of formula (8) in the case of

the three dimensional turbulence with Kolmogorov spectrum. In the
Kolmogorov picture turbulence is looked upon as a system of eddies corre-
sponding to different velocity frequencies. The matrix M(k) is of order of
the density of the kinetic energy corresponding to modes with frequency k.
From the dimensional considerations it follows that

M(k)t |k|&11�3 (9)

for large |k|.(10) It is worth noting that the results apply also if we allow
some intermittency correction to the spectrum M(k)t |k|&11�3++, with
0<+<4�3, as in the Kolmogorov refined similarity theory.

With the characteristic length scale L, and the characteristic velocity U
fixed, the size of the domain in which (9) is valid is determined by the fluid
viscosity. Namely, outside of the cube of size m, the matrix M(k) is
assumed to be rapidly decreasing. The size of the cube, m, is proportional
to the ratio of the 3�4 power of the Reynolds number R and the macro-
scopic length scale L of the flow, mtR3�4�L.

Since we are interested in upper estimates on the effective diffusivity,
we assume that |Mab(k)|�c(1+|k| )&11�3 for some c and all a, b, and k.
We shall study the dependence of the effective diffusivity on the Reynolds
number R, or more precisely, on the cutoff m in the velocity spectrum.
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As seen from (8) the function 0(k) is the decay rate, or inverse life time
of an eddy with frequency k. As follows from ref. 10, classical Kolmogorov
turbulence corresponds to the case 0(k)t |k|2�3 for large |k|.

We now state the assumptions on the stream function, in somewhat
more generality than needed for the case of pure Kolomogorov spectrum
of the velocity field.

Assumption A. V(x, t), x # R3 is a zero mean Gaussian field,
stationary in x and t, isotropic in x, and Markov in time.

Assumption B. The spectral matrix of the field V is given by (8),
where 0(k) is scalar, and the matrix M(k) is symmetric. There exists a
constant c>0, and a compact set K/R3, such that

|
K

dM(k)>cI

where I is the identity matrix. There exist constants c1 , c2>0, and :, ;,
such that

:&;+3<0

|Mab| (k)�c1(1+|k| ): (10)

0(k)�c2(1+|k| ) ; (11)

Moreover, 0(k) is Lipschitz continuous uniformly on any compact.

The case of pure Kolmogorov spectrum for three dimensional tur-
bulence corresponds to :=&11�3 and ;=2�3. The vector field V m(x, t) is
defined to be the real valued Gaussian random field whose spectral matrix

Gm@ is given by (8) on the set [ |ka|<m, a=1,..., 3], and is equal to zero
outside this set. Thus,

Gm@(k, t)=exp(&|t| 0(k)) M m(k)

where

Mm(k)=M(k) /[ |ka|<m]

It was shown in ref. 9 that under the above assumptions there exists m0

such that the effective diffusivity of the field V m for m�m0 exists and is
finite. We shall denote it by Dm, ab. We now formulate the main theorem of
this paper.
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Theorem 2.1. Suppose Assumptions A and B hold. Then there
exists a constant c such that |Dm, ab|<c, a, b=1,..., 3 for all m>m0 .

We next describe the approximation of the vector field V m(x, t) by the

vector fields V mn(x, t), whose spectral matrices Gmn@(k, t) are supported on
finite sets in k-space.

Consider the partition of the cube Qm=[ |ka|�m, a=1,..., 3] into
n=(2l )3 cubes 2i , i=1,..., n of the size m�l. Let k i be the center of 2i . Let
:i be the interior of 2i , ;i be the boundary of 2i excluding the edges, #i be
the edges without the endpoints, and $i be the set which consists of six
vertices of the cube 2i . Define

0i=0(ki )

and

Ni=|
:i

Mm(dk)+ 1
2 |

;i

Mm(dk)+ 1
4 |

#i

Mm(dk)+ 1
6 |

$i

Mm(dk) (12)

It is important to note that 2i , ki , 0i , :i , ;i , #i , $ i , and Ni depend on m
and n. The first step in the transition from Mm(k) to Mmn(k) consists of
integrating Mm(k) over each cube, and placing all the mass in the center.
The four different integrals enter (12) with their specified factors because
each side belongs to two different cubes, each edge��to four different cubes,
and each vertex to six different cubes. The second step is designed to make
the matrices Mmn satisfy the condition (Mmn(k) k, k)=0. We define P i to
be the orthogonal projection on the subspace orthogonal to ki . Define

Mmn
i =PiN i Pi ; Mmn(k)= :

n

i=1

$(ki ) M mn
i

and

Gmn@(k, t)=exp(&|t| 0(k)) M mn(k) (13)

Then V mn(x, t) is defined to be the real valued Gaussian random field
whose spectral matrix is given by (13).

The Fourier representation of the field V mn(x, t) in space variables is

V mn(x, t)=| eikxZ(dk, t)
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For t fixed Z(k, t) is an orthogonal Gaussian measure, which depends on

m and n. Since supp V mn@ (k, 0)/[ki ]

V mn(x, t)= :
n

i=1

eikixz(ki , t) (14)

where z(ki , t) are complex vector-valued Gaussian stationary processes.
The normalization of z(ki , t) is fixed by (13) so that

E(za(ki , t) zb(kj , 0))=$ijM mn, ab
i exp(&|t| 0i )

The fact that V(x, t) is a real valued field implies that together with the
mode ki the set [ki ] also contains &ki with the same M mn

i and 0i . We
shall write

[ki , i=1,..., n]=[ki , &ki , i=1,..., n�2]

Therefore we can write (14) as

V mn(x, t)= :
n�2

i=1

(Ai1(t) cos(ki x)+Ai2(t) sin(ki x)) (15)

Here Ail (t), i=1,..., n�2; l=1, 2 are independent real vector-valued station-
ary Gaussian processes and

E(Aa
il (t) Ab

i $l $(0))=2$ii $ $ll $ M mn, ab
i exp(&|t| 0i )

This implies that the Ail (t) are independent vector valued Ornstein�Uhlen-
beck processes with correlation scales 0i and variances 2M mn, ab

i .
Recall that Mmn

i is an orthogonal matrix, and ki is its eigenvector with
eigenvalue 0. Let e1

i , e2
i and *1

i , *2
i be the eigenvectors and eigenvalues of

Mmn
i in the subspace orthogonal to ki . Note that

Ail=- 2 (- *1
i e1

i B1
il+- *2

i e2
i B2

il)

where B1
il and B2

il are independent Ornstein�Uhlenbeck scalar valued pro-
cesses with correlation scales 0i and variances 1. We shall write

[Y i, i=1,..., 2n]=[B j
il , i=1,..., n�2; l=1, 2; j=1, 2]

We shall use the same notation 0i for the correlation scale of the process Y i.
Thus (15) becomes

V mn(x, t)= :
2n

i=1

Y i (t) vi (x) (16)
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where the vectors vi (x), i=1,..., 2n are of the following form

[vi , i=1,..., 2n]=[- 2*1
i e1

i cos kix, - 2*1
i e1

i sin kix, - 2*2
i e2

i cos ki x,

- 2*2
i e2

i sin kix, i=1,..., n�2] (17)

Therefore the vector fields vi are divergence free and infinitely smooth. By
the definition of ki the vector fields are periodic with common period
p=4l?�m.

The effective diffusivity of the vector field V mn will be denoted by Dmn, ab.
It was shown in ref. 9 that under Assumptions A and B there exists m0 ,
such that Dmn, ab � Dm, ab as n � � for m�m0 . Therefore Theorem 2.1 is
a consequence of the following

Theorem 2.2. Suppose Assumptions A and B hold. Then there
exists a constant c such that |Dmn, ab|<c, a, b=1,..., 3 for m�m0 ,
n�n0(m).

3. THE HYPOELLIPTIC EQUATION

In this section we express the effective diffusivity Dmn, ab in terms of the
solution of a hypoelliptic PDE. The estimate of the solution which leads to
the desired estimate of Dmn, ab is proved in Section 4.

By (16) the equation of motion in the vector field V mn(x, t) has the
form

dX a
t = :

2n

i=1

Y i
tv

a
i (Xt) dt, a=1,..., 3 (18)

where the Y i
t are independent Ornstein�Uhlenbeck processes

dY i
t=- 20 i dW i

t&0 iY i
t dt, i=1,..., 2n (19)

The operator

M= :
2n

i=1

0 i (�
2
yi

& yi �yi
)+ :

2n

i=1

y ivi (x) {x (20)

is the infinitesimal generator of the system (18)�(19). Recall that p is the
common period of the velocity modes defined in Section 2. Let

'(x, y)= p&3�2 `
2n

i=1

(2?)&1�4 exp \&
y2

i

4 +
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As initial conditions for the system we take the distribution '2, which is
invariant for the process (Xt , Yt) on T3

p_R2n.
Consider the equation

M \ua

'
+xa+=0 (21)

for a function ua(x, y) defined on T3
p_R2n. The function (ua�')+xa of (21)

is the analog of the harmonic coordinate of refs. 12 and 4. By carrying the
term Mxa to the RHS, and multiplying both sides by ', we rewrite Eq. (21)
as

:
2n

i=1

0i \�2
yi

&
y2

i

4
+

1
2+ ua+ :

2n

i=1

yivi{xua=& :
2n

i=1

yiva
i (x) '( y) (22)

Let us introduce notation needed for the statement of the theorem on
the existence and uniqueness of solutions to Eq. (22). S= is the space of
functions on T3

p_R2n which are infinitely smooth, orthogonal to ', and
decay faster than any polynomial together with all their derivatives. That
is f # S= if

|| f (x, y) '( y) dx dy=0 and sup
x, y

Q( y) P1(Dy) P2(Dx) f <�

for any polynomials P1 , P2 , and Q. L=
2 is the completion of S= in

L2(T3
p_R2n). Clearly

L=
2 �[const } '( y)]=L2(T3

p_R2n)

& }& is the usual norm of L2(T3
p_R2n). H= is the completion of S= in the

harmonic oscillator inner product

( f, g)H== :
2n

i=1
|| ((�yi

f )(�yi
g)+ y2

i fg+ fg) dx dy

Write

f =& :
2n

i=1

y iva
i (x) '( y) (23)

Lu= :
2n

i=1

0i \�2
yi

u&
y2

i

4
u+

1
2

u+ , Au= :
2n

i=1

yi vi (x) {x u, T=L+A
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We drop the superscript a on the solution of Eq. (22). With the above
notation Eq. (22) can be written as

Tu= f (24)

For the proof of the following theorem we refer the reader to ref. 8.

Theorem 3.1 (ref. 8). Suppose Assumptions A and B hold, and
f # L=

2 . Then for m�m0 , n�n0(m) the equation Tu= f has a unique
weak solution u # H=. There is a constant C(m, n), such that

&u&H=�C(m, n) & f & (25)

Next we state the theorem which provides the relationship between the
effective diffusivity and the solution of Eq. (21).

Theorem 3.2. Suppose Assumptions A and B hold. Then for
m�m0 , n�n0(m) the effective diffusivity Dmn, ab is expressed in terms of
the solution ua of Eq. (21) by the formula

Dmn, ab= 1
2 :

2n

i=1
||

T
3
p_R 2n

(uavb
i +ubva

i ) yi' dx dy (26)

Remark. The proof of Theorem 3.2 is based on application of Ito's
formula to ((ua�')+xa)(Xt , Yt) and to ((ub�')+xb)(Xt , Yt). A similar for-
mula expressing the effective diffusivity in terms of the solution of an
elliptic equation was employed in related problems, such as ref. 3. The dif-
ference in our case is that the operator in the left hand side of the Eq. (21),
which is the infinitesimal generator of the process, is not elliptic, but only
hypoelliptic. Therefore, rather that applying the general elliptic theory we
need Theorem 3.1 in order to show the existence and uniqueness of the
solution. For details see ref. 8.

4. PROOF OF THEOREM 2.2

The proof of Theorem 2.2 is based on the estimate of the solution ua

of Eq. (22). This is a hypoelliptic equation on 2n+3 dimensional space.
The first term on the LHS of (22) is an elliptic operator when considered
on R2n. Recall from the Introduction that the coefficients 0i are the decay
rates of the correlations of the corresponding velocity modes. The bound
from below on the coefficients which follows from (11) allows for the
estimate of ua which is independent of m and n.
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Proof of Theorem 2.2. We represent the solution u of (22) uniquely
as a sum of two functions which are orthogonal in L2(R2n) for all x, that
is

u(x, y)=w(x, y)+u0(x) '( y) (27)

where � u0(x) dx=0, and � w(x, y) '( y) dy=0 as an element of L2(T3
p).

Since � '2y i dy=0, the term u0(x) '( y) does not contribute to the integral
on the RHS of (26). Therefore it is sufficient to estimate the contribution
of w to the integral.

Consider the operator T of the LHS of (22) as an (unbounded)
operator from H= to L=

2 with domain S=. We need the following lemma,
for the proof of which we refer the reader to ref. 8.

Lemma 4.1 (ref. 8). Under the assumptions of Theorem 2.2, the
closure of TS= coincides with L=

2 .

By Lemma 4.1 there exists a sequence uk # S=, such that

Tuk= f k � f in L=
2 (28)

Then [ f k] is a Cauchy sequence in L=
2 , and by (25)

uk � u in H= (29)

Let

uk=wk+uk
0 '

f k= gk+ f k
0 '

as in (27). Note that by (28), (29), and since � f' dy=0

wk � w in H=; gk � f in H= (30)

uk
0 � u0 in L2(T3

p); f k
0 � 0 in L2(T3

p) (31)

The equation Tuk= f k can be written as

Lwk+Auk
0(x) '( y)+Awk= gk+ f k

0 ' (32)

In order to estimate the contribution of w to the integral in the RHS of
(26) we first derive an integral relation satisfied by wk and uk

0 . In order to
do so we multiply (32) successively by ' and wk and integrate in y. We
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could not perform this integration with w and u0 replacing wk and uk
0 in

(32), since w may not belong to S=, and thus the integral over y may not
converge. Then we let k � � in order to obtain the corresponding relation
on w. This relation is used to bound the RHS of (26).

Multiplying (32) by ' and integrating in y yields

| 'Lwk dy+| Auk
0(x) '2( y) dy+| Awk'( y) dy=| gk' dy+| f k

0 '2 dy (33)

The RHS of (33) is equal to (1�p3) f k
0(x). Note that also � 'Lwk dy=

� wkL' dy=0 since L'=0, and � Auk
0(x) '2( y) dy=0 since � y i'2( y) dy=0.

Thus

| Awk' dy=
1
p3 f k

0(x) (34)

Multiplying (32) by wk and integrating in y, we obtain

| wkLwk dy+| wkAuk
0(x) '( y) dy+| wkAwk dy=| gkwk dy+| f k

0(x) 'wk dy
(35)

Note that

| wkAwk dx= :
2n

i=1

y i | wkvi (x) {xwk dx= 1
2 :

2n

i=1

yi | div(vi (wk)2) dx=0

and thus the last term of the LHS of (35) vanishes after integration over x.
The second term on the RHS of (35) vanishes since � 'wk dy=0. By (34),
since A*=&A

|| wkAuk
0(x) '( y) dx dy=&|| uk

0 Awk'( y) dx dy=&
1
p3 | f k

0(x) uk
0(x) dx

Therefore, by (35), we obtain the desired relation on wk and uk
0 ,

|| wkLwk dx dy=|| gkwk dx dy+
1
p3 | f k

0(x) uk
0(x) dx (36)

In order to obtain an integral relation of this type for the limit w we
consider k � � in (36). By (30) and (31)

|| wLw dx dy=|| fw dx dy (37)
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We now use (37) to bound the RHS of (26). Note that [ p3�2yi',
i=1,..., 2n] is an orthonormal system in L2(R2n). Let ai (x)=
p3�2 � wy i' dy, and let w i (x, y)= p3�2ai (x) yi '. Thus for each x the sum
�2n

i=1 wi is the projection in L2(R2n) of w on the subspace spanned by the
functions [ yi ']. In particular by (23) the function w~ =w&�2n

i=1 wi is
orthogonal to f in L2(R2n) for each x. Since L( y i')=&0i y i', substituting

w=w~ + :
2n

i=1

wi (38)

into (37) we obtain

|| w~ Lw~ dx dy& :
2n

i=1

0i | a2
i (x) dx= p&3�2 :

n

i=1
| ai (x) va

i (x) dx (39)

Since �� w~ Lw~ dx dy�0 we conclude from (39) that

:
2n

i=1

0i | a2
i (x) dx�p&3�2 :

2n

i=1
| |ai (x) va

i (x)| dx (40)

By Schwartz inequality, the RHS of (40) is estimated as follows

p&3�2 :
2n

i=1
| |ai (x) va

i (x)| dx

�
c2

2
:
2n

i=1

(1+|k i | )
; | a2

i (x) dx+
2

p3c2

:
2n

i=1

(1+|ki | )
&; | (va

i )2 (x) dx
(41)

where c2 and ; are the same as in (11). Note that by (17) the second term
on the RHS of (41) is bounded from above by (2�c2) �n

i=1 (1+|ki | )
&;

(*1
i +*2

i ), where *1
i and *2

i are the eigenvalues of M mn
i . From (10) and from

the definition of the matrices M mn
i it follows that *1

i +*2
i �c(1+|k i | )

:

vol(2i ). Thus the sum �n
i=1 (1+|ki | )

&; (*1
i +*2

i ) is bounded form above
by c �n

i=1 (1+|ki | )
&;+: vol(2 i ), which is an integral sum for the integral

� |ka|�m (1+|k| ):&; dk. Since :&;+3<0 these integrals are uniformly
bounded in m, and therefore the second term on the RHS of (41) is
bounded from above by a constant independent of m and n. Therefore by
(40), (41), and (11) there exists a constant C such that

:
2n

i=1

(1+|ki | )
; | a2

i (x) dx�C (42)
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In order to bound the RHS of (26) is is sufficient to bound
�2n

i=1 �� uavb
i yi ' dx dy. By (27) and (38)

:
2n

i=1
|| uavb

i yi' dx dy= :
2n

i=1
|| wivb

i yi ' dx dy= p&3�2 :
2n

i=1
| ai (x) vb

i dx (43)

By Schwartz inequality, the RHS of (43) is bounded from above by

:
2n

i=1

(1+|ki | )
; | a2

i (x) dx+ p&3 :
2n

i=1

(1+|ki | )
&; | (vb

i )2 (x) dx

The first term is bounded from above by C due to (42), and the second
term is bounded by another constant, due to (17) and (10) since
:&;+3<0. Therefore the RHS of (26) is bounded from above by a
constant. This completes the proof of Theorem 2.2.
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